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partitioning technique

Arteum D. Bochevarov and C. David Sherrill∗
Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry,

Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
E-mail: sherrill@chemistry.gatech.edu

Received 12 January 2006; revised 12 February 2006

It is shown that several simple theorems follow from Löwdin’s partitioning tech-
nique. Our results concern the properties of matrices whose eigenvectors have linearly
dependent parts. It is also demonstrated that the solutions of most energy eigenvalue
problems satisfy a non-trivial manifold of quadratic equations in energy.
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1. Introduction

Throughout this communication, all our equations are written in a finite-
dimensional, matrix-vector form. Löwdin’s partitioning technique [1–4], which we
briefly outline below, is an important tool in the development of quantum chem-
ical formalisms and is actively applied in contemporary research [5–10]. The var-
iation of the Rayleigh–Ritz functional

E = 〈C |H |C〉/〈C |C〉 (1)

written in terms of the discrete variational configuration interaction coefficients
Ci results in the well-known eigenvalue equation, which for the purpose of par-
titioning is written in the following block matrix form

(
H Q Q H Q R

H RQ H R R

)(
C Q

C R

)
= E

(
C Q

C R

)
(2)

or, multiplying the blocks,

H Q Q |C Q〉 + H Q R|C R〉 = E |C Q〉, (3)
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H RQ |C Q〉 + H R R|C R〉 = E |C R〉. (4)

The superscripts in these equations have the meaning of the dimension of the
corresponding quantities. The total dimension of the system (2) is N = Q + R.
To arrive at the effective eigenvalue problem, which is the central equation of
the partitioning technique, we use the second of these equations to express C R

through C Q

|C R〉 = (E − H R R)−1 H RQ |C Q〉, (5)

we eliminate C R and arrive at the representation
[

H Q Q + H RQ(E − H R R)−1 H RQ
]
|C Q〉 = E |C Q〉, (6)

which is equivalent to (2). The partitioning technique may be used for a direct
solution of the eigenvalue problem. Various expansion techniques [1] allow us
to write the energy E contained in this non-linear equation as an infinite series
of terms. It is possible to derive in such a way, for example, the Brillouin–
Wigner and Rayleigh–Schrödinger perturbation formulas. When E and C Q have
been determined from (6), the remaining component C R is calculated from (5).
Assuming that (E − H R R)−1 exists and the perturbation series used to calculate
E converges, equation (2) is solved. Although in practice the perturbation series
is terminated at the second or third order and E and C are determined with an
error, it is important to observe that this approach in principle provides the exact
solution of (2).

2. Discussion

The usefulness of the partitioning technique rests on its ability to find C
and E , which are the solutions of the eigenvalue problem (2). If, however, we
assume that C and E are already known, a few interesting mathematical results
follow from equation (2). In what follows we prove some results concerning the
spectral properties of matrices with eigenvectors whose parts are linearly depen-
dent.

Surprisingly, it is possible to write the formal solution of the eigenvalue
equations in a closed form. Multiplying (4) by H Q R from the left (so that the
matrix acting on C Q becomes square) and then expressing C Q through E as in

|C Q〉 = W Q R
(

E − H R R
)

|C R〉, (7)

W Q R = (H Q R H RQ)−1 H Q R, (8)
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we rewrite (3) as a quadratic equation in E :

E2|a〉 + E |b〉 + |c〉 = 0, (9)

where the vectors |a〉, |b〉, and |c〉 are defined as

|a〉 = −W Q R|C R〉, (10)

|b〉 = H Q Q W Q R|C R〉 − W Q R|U R〉, (11)

|c〉 = H Q Q W Q R|U R〉 − |U Q〉 (12)

and the following abbreviations are used

|U Q〉 = −H Q R|C R〉, (13)

|U R〉 = −H R R|C R〉. (14)

The assumption that the inverse of H Q R H RQ exists leads us to the necessary
condition Q � R (which will be adhered to in the rest of the paper, unless
indicated otherwise). For convenience of discussion, the Q equations which con-
stitute (9) may also be ‘averaged’ by means of a contraction with an arbitrary
non-zero vector 〈X Q |:

〈X Q |a〉E2 + 〈X Q |b〉E + 〈X Q |c〉 = 0. (15)

Clearly, when C R is exact, the root E of the projected equation (15), which is at
the same time the root of (2), does not depend on the particular choice of 〈X Q |.
Note that for a two-by-two matrix H equation (9) is a scalar one and is identical
to the characteristic equation of H .

Suppose we choose such an eigenvector Ci of H that has a unique C R .
In other words, no other eigenvector of H shares the part C R with our cho-
sen eigenvector. The eigenvalue corresponding to this eigenvector is Ei . Then
the projected equation (15) constructed from this C R will have two roots, one of
which is guaranteed to be Ei . Another root does not have to satisfy the eigen-
value equations and in the general case depends on the projection 〈X Q |. The
independence of projection may allow us to distinguish the true solution of (2)
from the spurious one. The spurious root has its origin in the act of projection
by 〈X Q | and its existence is explained by the fact that the scalar equations which
constitute (9) are satisfied by the actual eigenvalue of (2) only. Assume now that
we have two eigenvectors Ci and C j with two distinct eigenvalues Ei and E j and
two identical parts C R . In this case the individual scalar equations in (9) may
be satisfied by two different roots, and the projected equation (15) will have two
solutions, Ei and E j which do not depend on the projection.
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Now we would like to make a comment that will be used in the proof of
the results below. It is well-known that two eigenvectors |d1〉 and |d2〉 of N ×
N matrix A that correspond to the same eigenvalue E may be added together
with arbitrary coefficients α1 and α2, and the vector |d3〉 resulting from this lin-
ear combination will also be an eigenvector of A with the same eigenvalue E .
Suppose that we want to take two linear combinations of |d1〉 and |d2〉 in such
a way that two resulting eigenvectors |d ′

1〉 and |d ′
2〉 are partly coincident:

|d ′
1〉 − |d ′

2〉 = {d ′
11 − d ′

21, d ′
12 − d ′

22, . . . , d ′
1k − d ′

2k, 0, 0, . . . , 0,

d ′
1l − d ′

2l, d ′
1l+1 − d ′

2l+1, . . . , d ′
1N − d ′

2N }. (16)

In this formula, d ′
1k is the kth component of the vector |d ′

1〉. Obviously, this
is possible only when l − k − 1 corresponding components of |d1〉 and |d2〉 con-
stitute linearly dependent vectors, i.e. if at least one of these vectors is zero or

{d1,k+1, d1,k+2, . . . , d1,l−1} = α{d2,k+1, d2,k+2, . . . , d2,l−1}, (17)

where α �= 0. If the l −k −1 components of |d1〉 and |d2〉 constitute linearly inde-
pendent vectors, two different vectors |d ′

1〉 and |d ′
2〉, which satisfy (16) cannot be

constructed because a vector has unique coordinates in the basis of |d1〉 and |d2〉.
So, it appears that if two eigenvectors |d1〉 and |d2〉 have linearly dependent parts,
we may always convert them into the eigenvectors |d ′

1〉 and |d ′
2〉, which have the

coincident parts, so that |d ′
1〉 and |d ′

2〉 remain eigenvectors with the eigenvalues
of |d1〉 and |d2〉, respectively.

Theorem 1. If an arbitrary square matrix H separated into blocks in the man-
ner of that in equation (2) (so that R � Q) possesses two eigenvectors C1,
C2 with the same eigenvalue and with linearly dependent parts C R

1 , C R
2 , then

rank(H Q R) < Q.

Proof. Suppose rank(H Q R) = Q, then H Q R H RQ is invertible and expression
(7) can be constructed. Further, C1 and C2 may be converted into the eigen-
vectors C ′

1 and C ′
2 by two suitable linear combinations so that C ′R

1 = C ′R
2 ≡ C R .

Then (by equation (7)) C Q is a linear, deterministic function of E and C R . This
contradicts the fact that different vectors C Q may correspond to one eigenvalue
E and one vector C R . Thus, our supposition is not true and rank(H Q R)<Q.

As an important corollary used in the proof of the next theorem, we note
that if an arbitrary square matrix H separated into blocks in the manner of
that in equation (2) (so that R � Q) possesses two eigenvectors C1 and C2 with
linearly dependent parts C R

1 , C R
2 and rank(H Q R) = Q, then two eigenvalues cor-

responding to C1 and C2 are non-degenerate. Indeed, under the conditions of
theorem 1, if the two eigenvalues are degenerate, then rank(H Q R) < Q. If they
are not degenerate, rank(H Q R) may be either Q or less than Q. So, we conclude
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that the equality rank(H Q R) = Q may correspond only to the situation in which
the two eigenvalues are non-degenerate.

Now we prove another theorem related to the possibility of having three
eigenvectors with identical parts C R which further explains some properties of
equation (9).

Theorem 2. If an arbitrary square matrix H separated into blocks in the manner
of that in equation (2) (so that R � Q) possesses three eigenvectors C1, C2, C3
with linearly dependent parts C R , then rank(H Q R) < Q.

Proof. Suppose rank(H Q R) = Q. Then H Q R H RQ is invertible and (9–15) can
be constructed. By theorem 1, three eigenvalues corresponding to the three ei-
genvectors C1, C2, C3, are distinct. By suitable multiplications we may convert
C1, C2, C3 into the eigenvectors C ′

1, C ′
2, C ′

3 with C ′R
1 = C ′R

2 = C ′R
3 ≡ C R . The

projected quadratic equation (15) is satisfied with all possible eigenvalues of H
that correspond to C1, C2, C3. However, since the equation is quadratic, it can-
not be satisfied with three distinct values of E . Hence, we arrive at the contra-
diction and rank(H Q R) < Q.

Another simple conclusion follows directly from equation (5).

Theorem 3. If an arbitrary square matrix H separated into blocks in the man-
ner of that in equation (2) possesses two eigenvectors C1 and C2 with linearly
dependent parts C Q

1 and C Q
2 (Q is arbitrary) and identical eigenvalues E , then

E is also an eigenvalue of the matrix H R R .

Proof. Suppose (E − H R R)−1 exists. The vectors C Q
1 and C Q

2 may be equated
(C Q

1 = C Q
2 ≡ C Q) by two suitable linear combinations. Then C R is a linear, deter-

ministic function of E and C Q . This contradicts the fact that C R
1 , C R

2 correspond
to only one vector C Q and one value E . The only way to resolve this contradic-
tion is to assume that (5) cannot be constructed because (E − H R R)−1 does not
exist. Consequently, E is the eigenvalue of H R R .

Note that using this theorem for the case when Q = 1 we arrive at
the corollary which also follows from the separation theorem by MacDonald
[11] if the matrix ||Hi j ||1�i, j�N possesses degenerate eigenvalue E the matrix
||Hi j ||1�i, j�N−1 possesses this eigenvalue too.
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